Autonics

Side Mount Type Incremental Rotary Encoders

ENA Series PRODUCT MANUAL

For your safety, read and follow the considerations written in the instruction manual, other manuals and Autonics website.

The specifications, dimensions, etc. are subject to change without notice for product improvement. Some models may be discontinued without notice.

Features

- Die-cast external housing provides excellent immunity to impact
- Designed to mount directly onto frames
- Various resolutions: 1 to 5000 pulses per revolution
- Various control output options
- Power supply: 5 VDC== \pm 5%, 12 24 VDC== \pm 5%

Safety Considerations

- Observe all 'Safety Considerations' for safe and proper operation to avoid hazards.
- Δ symbol indicates caution due to special circumstances in which hazards may occur.
- **Warning** Failure to follow instructions may result in serious injury or death.
- 01. Fail-safe device must be installed when using the unit with machinery that may cause serious injury or substantial economic loss. (e.g. nuclear power control, medical equipment, ships, vehicles, railways, aircraft, combustion apparatus, safety equipment, crime / disaster prevention devices, etc.)
- Failure to follow this instruction may result in personal injury, economic loss or fire.
 20. Do not use the unit in the place where flammable / explosive / corrosive gas, high humidity, direct sunlight, radiant heat, vibration, impact or salinity may be present.
- Failure to follow this instruction may result in explosion or fire. 03. Install on a device panel to use.
- Failure to follow this instruction may result in fire.
- 04. Do not connect, repair, or inspect the unit while connected to a power source.
- Failure to follow this instruction may result in fire. **05. Check 'Connections' before wiring.**
- Failure to follow this instruction may result in fire. **06. Do not disassemble or modify the unit.** Failure to follow this instruction may result in fire.

A Caution Failure to follow instructions may result in injury or product damage.

- 01. Use the unit within the rated specifications.
- Failure to follow this instruction may result in fire or product damage. **02. Do not short the load.**
- Failure to follow this instruction may result in fire.
 Oo not use the unit near the place where there is the equipment which generates strong magnetic force or high frequency noise and strong alkaline, strong acidic exists.
 Failure to follow this instruction may result in product damage.

Cautions during Use

- Follow instructions in 'Cautions during Use'.
- Otherwise, It may cause unexpected accidents. • 5 VDC==, 12 - 24 VDC== power supply should be insulated and limited voltage / current
- or Class 2, SELV power supply device.
- For using the unit with the equipment which generates noise (switching regulator, inverter, servo motor, etc.), ground the shield wire to the F.G. terminal.
 Ground the shield wire to the F.G. terminal.
- Ground the shield wire to the F.G. terminal.
 When supplying power with SMPS, ground the F.G. terminal and connect the noise
- canceling capacitor between the 0 V and F.G. terminals. • Wire as short as possible and keep away from high voltage lines or power lines, to
- prevent inductive noise. • Check the wire type and response frequency when extending wire because of distance or california of way for a provide a strange or california of the strange or california of the strange of
- distortion of waveform or residual voltage increment etc. by line resistance or capacity between lines.
- This unit may be used in the following environments.
- Indoors (in the environment condition rated in 'Specifications') - Altitude max. 2,000 m
- Altitude max. 2,000 n - Pollution degree 2
- Installation category II

Cautions during Installation

- Install the unit correctly with the usage environment, location, and the designated specifications.
- Do not load overweight on the shaft.
- Do not put strong impact when insert a coupling into shaft. Failure to follow this instruction may result in product damage.
- When fixing the product or coupling with a wrench, tighten under 0.15 N m.
- If the coupling error (parallel misalignment, angular misalignment) between the shaft increases while installation, the life cycle of the coupling and the encoder can be shorten.
- Do not apply tensile strength over 30 N to the cable.

Ordering Information

This is only for reference, the actual product does not support all combinations. For selecting the specified model, follow the Autonics website.

ENA	-	0	-	0	-	₿	-	4
Resol	ution			6	Control	output		
Number:	Refer to	resolution	in	T: T	otem po	le output		

'Specifications'

2 Output phase 2: A, B 3: A, B, Z N: NPN open collector output V: Voltage output **③ Power supply** 5: 5 VDC= ±5% 24: 12 - 24 VDC= ±5%

Product Components

• Product (+ connector cable)

Instruction manual

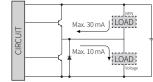
Bolt × 4
Coupling × 1

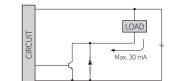
Connections

- Unused wires must be insulated.
- The metal case and shield cable of encoders must be grounded (F.G.).
- F.G. (Frame Ground) must be grounded separately.

A, B phase output model

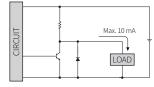
Pin	Color	Function	Pin	Color	Function
1	Black	OUTA	3	Brown	+V
2	White	OUT B	4	Blue	GND

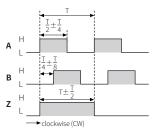

A, B, Z phase output model


Pin	Color	Function	Pin	Color	Function
1	Black	OUT A	4	Brown	+V
2	White	OUT B	5	Blue	GND
3	Orange	OUT Z			

Inner Circuit

Output circuits are identical for all output phase.

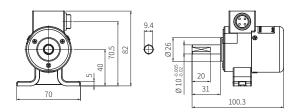

Totem pole output

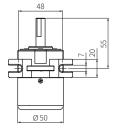

NPN open collector output

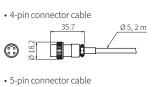
Voltage output

Output Waveform

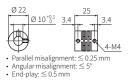
- The rotation direction is based on facing the shaft, and it is clockwise (CW) when rotating to the right.
- Phase difference between A and B: $\frac{T}{4} \pm \frac{T}{8}$ (T = 1 cycle of A)


Specifications


Model	ENA-🗆-🗖-T-🗖	ENA-DN-D	ENA-DV-D		
Resolution	1 / 2 / 5 PPR ⁰¹⁾ 10 to 5,000 PPR model				
Control output	Totem pole output	NPN open collector output	Voltage output		
Output phase	A, B / A, B, Z output model	A, B / A, B, Z output model	A, B / A, B, Z output model		
Inflow current	\leq 30 mA	\leq 30 mA	-		
Residual voltage	≤ 0.4 VDC==	≤ 0.4 VDC==	\leq 0.4 VDC==		
Outflow current	\leq 10 mA	-	\leq 10 mA		
Output voltage (5 VDC==)	≥ (power supply -2.0) VDC==	-	-		
Output voltage (12 - 24 VDC==)	≥ (power supply -3.0) VDC==	-	-		
Response speed ⁰²⁾	$\leq 1 \mu s$				
Max. response freq.	300 kHz				
Max. allowable revolution ⁰³⁾	5,000 rpm				
Starting torque	\leq 0.007 N m				
Inertia moment	$\leq 80 \mathrm{g} \cdot \mathrm{cm}^2 (8 \times 10^{-6} \mathrm{kg} \cdot \mathrm{m}^2)$				
Allowable shaft load	Radial: \leq 10 kgf, Thrust	: ≤ 2.5 kgf			
Unit weight	≈ 345 g				
	C E K ERI				
Approval 01) Depending on the cor		ut.			
 Depending on the cor Based on cable length Select resolution to sa [max. response revolu 	ntrol ouput, only A, B are outp n: 2 m, I sink: 20 mA atisfy Max. allowable revolutic ution (rpm) = <u>max. response f</u> resolutio	$n \ge Max.$ response revolution requency n N	n		
01) Depending on the cor 02) Based on cable length 03) Select resolution to sa (max. response revolu Power supply	ntrol ouput, only A, B are outp n: 2 m, I sink: 20 mA atisfy Max. allowable revolutic ation (rpm) = <u>max. response f</u> resolutio 5 VDC== ± 5% (ripple P 12 - 24 VDC== ± 5% (rip	$m \ge Max. response revolution \frac{requency}{n} \times 60 \text{ sec}-P: \le 5\%) /$	1		
01) Depending on the cor 02) Based on cable lengti 03) Select resolution to sa [max. response revolu Power supply Current consumption	triol ouput, only A, B are outp r: 2 m, I sink: 20 mA titisfy Max. allowable revolutic titisfy Max. allowable revolutic resolutio 5 VDC= \pm 5% (ripple P 12 - 24 VDC= \pm 5% (rip \leq 80 mA (no load)	n ≥ Max. response revolutior requency n .P: ≤ 5%) / ple P-P: ≤ 5%) model	1		
01) Depending on the cor 02) Based on cable lengti 03) Select resolution to sa [max. response revolu Power supply Current consumption	triol ouput, only A, B are outp x: 2 m, I sink: 20 mA titisfy Max. allowable revolutic titisfy Max. allowable revolutic resolution 5 VDC= \pm 5% (ripple P 12 - 24 VDC= \pm 5% (rip \leq 80 mA (no load) \geq 100 MΩ (500 VDC= m	n ≥ Max, response revolutior requency × 60 sec] -P: ≤ 5%) / ple P-P: ≤ 5%) model negger)			
01) Depending on the cor 02) Based on cable lengti 03) Select resolution to sa [max. response revolu Power supply Current consumption	triol ouput, only A, B are outp x: 2 m, I sink: 20 mA titisfy Max. allowable revolutic titisfy Max. allowable revolutic tition (rpm) = <u>max. responsef</u> resolutio 5 VDC= \pm 5% (ripple P 12 - 24 VDC= \pm 5% (rip \leq 80 mA (no load) \geq 100 MΩ (500 VDC= m Between the charging p	$\begin{array}{l} n \geq \text{Max, response revolutior} \\ \hline \frac{\text{requency}}{n} \times 60 \text{ sec} \\ \hline \text{P:} \leq 5\%) / \\ \text{ple P-P:} \leq 5\%) \text{ model} \\ \hline \text{negger} \\ \text{art and the case: 750 VAC} \end{array}$	C \sim 50 / 60 Hz for 1 minute		
01) Depending on the cor 02) Based on cable lengti 03) Select resolution to sa [max. response revolu Power supply Current consumption Insulation resistance	triol ouput, only A, B are outp x: 2 m, I sink: 20 mA titisfy Max. allowable revolutic titisfy Max. allowable revolutic tition (rpm) = <u>max. responsef</u> resolutio 5 VDC= \pm 5% (ripple P 12 - 24 VDC= \pm 5% (rip \leq 80 mA (no load) \geq 100 MΩ (500 VDC= m Between the charging p	$\begin{array}{l} n \geq \text{Max, response revolutior} \\ \hline \frac{\text{requency}}{n} \times 60 \text{ sec} \\ \hline \text{P:} \leq 5\%) / \\ \text{ple P-P:} \leq 5\%) \text{ model} \\ \hline \text{negger} \\ \text{art and the case: 750 VAC} \end{array}$			
01) Depending on the cor 02) Based on cable length 03) Select resolution to sa (max. response revolu Power supply Current consumption Insulation resistance Dielectric strength	triol ouput, only A, B are outp x: 2 m, I sink: 20 mA titisfy Max. allowable revolutic titisfy Max. allowable revolutic tition (rpm) = $\frac{max}{responsef}$ resolutio 5 VDC= \pm 5% (ripple P 12 - 24 VDC= \pm 5% (ripple P 12 - 24 VDC= \pm 5% (ripple P 2 = 00 MΩ (500 VDC= n Between the charging p 1 mm double amplitude	$\begin{array}{l} n \geq \text{Max, response revolutior} \\ \hline \frac{\text{requency}}{n} \times 60 \text{ sec} \\ \hline \text{P:} \leq 5\%) / \\ \text{ple P-P:} \leq 5\%) \text{ model} \\ \hline \text{negger} \\ \text{art and the case: 750 VAC} \end{array}$	C \sim 50 / 60 Hz for 1 minute		
01) Depending on the cor 02) Based on cable length 03) Select resolution to sa [max, response revolu Power supply Current consumption Insulation resistance Dielectric strength Vibration	triol ouput, only A, B are outp x: 2 m, I sink: 20 mA titisfy Max. allowable revolutic titisfy Max. allowable revolutic resolutio 5 VDC= ± 5% (ripple P 12 - 24 VDC= ± 5% (ripple P) 12 - 24 VDC= ± 5% (ripple P) 12 - 24 VD	$\begin{array}{l} n \geq \text{Max, response revolutior} \\ \hline \frac{\text{requency}}{n} \times 60 \text{ sec} \\ \hline \text{P:} \leq 5\%) / \\ \text{ple P-P:} \leq 5\%) \text{ model} \\ \hline \text{negger} \\ \text{art and the case: 750 VAC} \end{array}$	C∼50/60 Hz for 1 minute z in each X, Y, Z direction		
01) Depending on the cor 02) Based on cable length 03) Select resolution to sa [max, response revolu Power supply Current consumption Insulation resistance Dielectric strength Vibration Shock	triol ouput, only A, B are outp $x: 2 mess{main}$, sink: 20 mA titisfy Max. allowable revolutic titisfy Max. allowable revolutic x: response f resolutio 5 VDC= ± 5% (ripple P 12 - 24 VDC= ± 5% (ripple P) 12 - 24 VDC= ± 5% (ripple P) 13 - 24 VDC= ± 5% (ripple P) 14 - 24 VDC= ± 5% (ripple P) 14 - 24 VDC= ± 5% (ripple P) 14 - 24 VDC= ± 5% (ripple P	$\label{eq:response revolution} n \geq Max, response revolution requency \times 60 sec]-P: \leq 5%) / ple P-P: \leq 5%) modelregger)art and the case: 750 VACe at frequency 10 to 55 H$	$C \sim 50 / 60$ Hz for 1 minute z in each X, Y, Z direction condensation)		
21) Depending on the cor 22) Based on cable length 23) Select resolution to sa [max, response revolu Power supply Current consumption Insulation resistance Dielectric strength Vibration Shock Ambient temp.	triol ouput, only A, B are outp $x: 2 mess{main}$, sink: 20 mA titisfy Max. allowable revolutic titisfy Max. allowable revolutic x: response f resolutio 5 VDC= ± 5% (ripple P 12 - 24 VDC= ± 5% (ripple P) 12 - 24 VDC= ± 5% (ripple P) 13 - 24 VDC= ± 5% (ripple P) 14 - 24 VDC= ± 5% (ripple P) 14 - 24 VDC= ± 5% (ripple P) 14 - 24 VDC= ± 5% (ripple P	$\label{eq:response revolution} n \geq Max, response revolution requency \times 60 sec]-P: \leq 5%) / ple P-P: \leq 5%) modelnegger)art and the case: 750 VACe at frequency 10 to 55 Hto 85 °C (no freezing or or 10 to 55 H) $	$C \sim 50 / 60$ Hz for 1 minute z in each X, Y, Z direction condensation)		
01) Depending on the cor 02) Based on cable length 03) Select resolution to sa [max, response revolu Power supply Current consumption Insulation resistance Dielectric strength Vibration Shock Ambient temp. Ambient humi.	triol ouput, only A, B are outp $x: 2 mess{main}$, sink: 20 mA tisfy Max. allowable revolutic tition (rpm) = $\frac{max}{responsef}$ resolutio 5 VDC= ± 5% (ripple P 12 - 24 VDC= ± 5% (r	$\label{eq:response revolution} n \geq Max, response revolution requency \times 60 sec]-P: \leq 5%) / ple P-P: \leq 5%) modelnegger)art and the case: 750 VACe at frequency 10 to 55 Hto 85 °C (no freezing or or 10 to 55 H) $	C∼ 50 / 60 Hz for 1 minute z in each X, Y, Z direction condensation)		
01) Depending on the cor 02) Based on cable length 03) Select resolution to sa [max, response revolu Power supply Current consumption Insulation resistance Dielectric strength Vibration Shock Ambient temp. Ambient humi. Protection rating	triol ouput, only A, B are outp 1:2 m, I sink: 20 mA titisfy Max, allowable revolutic resolutio 5 VDC= ± 5% (ripple P 12 - 24 VDC= ± 5% (rip ≤ 80 mA (no load) ≥ 100 MΩ (500 VDC=: n Between the charging p 1 mm double amplitud for 2 hours ≤ 75 G -10 to 70 °C, storage: -25 35 to 85%RH, storage: 3 1P50 (IEC standard) Radial connector type Ø 5 mm, 2 m, shield cab	$\label{eq:response revolution} n \geq Max, response revolution requency \times 60 sec]-P: \leq 5%) / ple P-P: \leq 5%) modelnegger)art and the case: 750 VACe at frequency 10 to 55 Hto 85 °C (no freezing or of5 to 90%RH (no freezing$	C~ 50 / 60 Hz for 1 minute z in each X, Y, Z direction condensation) or condensation)		
01) Depending on the cor 02) Based on cable lengti 03) Select resolution to sa [max. response revolu Power supply Current consumption Insulation resistance Dielectric strength Vibration Shock Ambient temp. Ambient humi. Protection rating Connection	triol ouput, only A, B are outp 1:2 m, I sink: 20 mA titisfy Max, allowable revolutic resolutio 5 VDC= ± 5% (ripple P 12 - 24 VDC= ± 5% (ripple P 2 - 24 VDC= ± 5% (ripple P 2 - 24 VDC= ± 5% (ripple P 2 - 24 VDC= ± 5% (ripple P 10 mA (no load) ≥ 100 MΩ (500 VDC= m Between the charging p 1 mm double amplitude for 2 hours ≤ 75 G -10 to 70 °C, storage: -22 35 to 85% RH, storage: 3 1P50 (IEC standard) Radial connector type Ø 5 mm, 2 m, shield cata A, B phase output mode	n ≥ Max, response revolution requency × 60 sec] n P: ≤ 5%) / ple P-P: ≤ 5%) model negger) art and the case: 750 VA(art frequency 10 to 55 H to 85 °C (no freezing or of 5 to 90%RH (no freezing le	C~ 50 / 60 Hz for 1 minute z in each X, Y, Z direction condensation) or condensation) output model: 5-wire		


Dimensions

• Unit: mm, For the detailed drawings, follow the Autonics website.



Connector cable

Coupling

